If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-14a-96=0
a = 1; b = -14; c = -96;
Δ = b2-4ac
Δ = -142-4·1·(-96)
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{145}}{2*1}=\frac{14-2\sqrt{145}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{145}}{2*1}=\frac{14+2\sqrt{145}}{2} $
| 3.2x-8.2=17.4 | | F(x)=250,000 | | 9+3(c+2)=2c+5 | | -.8x^2+6x-5.4=0 | | 5=5n+5 | | 5x-7(x-2)=22 | | 4(g+2)+8=56 | | 4(n-8)-4=4 | | 4x-4=-3 | | 1000=200+(50×x) | | -3/2(d-2)=21 | | 3(m-5)-5(m-5)=4m-5m | | 6−-2m=-4 | | 25+5n=6(1+4n) | | n−8=-1 | | (7x+5)(x^2-x-30)=0 | | p+5/11=2 | | -5x+7=68 | | -4(-2x+1)-x=3(x-4)-2 | | 7y=(4y+12) | | 29-17=4(x-4) | | -m-7=4 | | 8x-8=-8(2x+1) | | 7y=2(4y+12) | | X2+10x+13=-8 | | x2−4x=6 | | 53+5y-15=14y-11-2y | | -2g+-6=0 | | -2u+16=-6(u-6) | | 6x-4=-10-x | | 12x-(6-8x)=1/2(8x-12) | | 2x-8+3+2=4x=10+3x-6 |